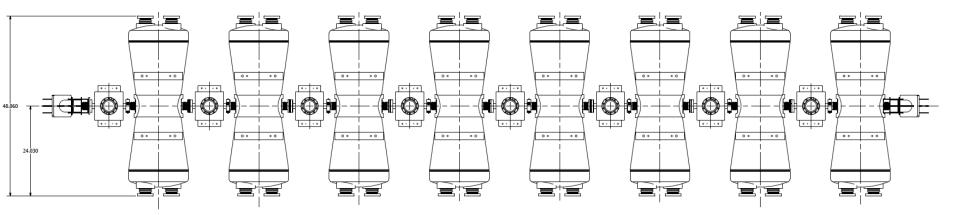
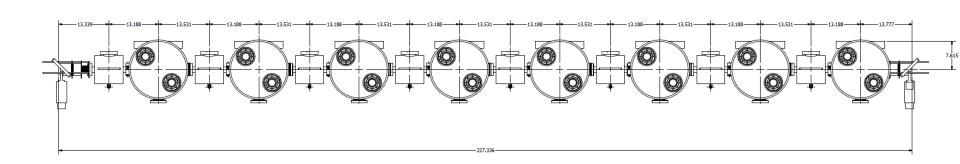
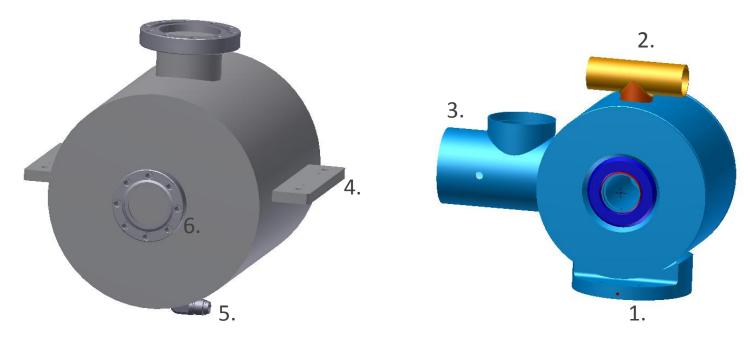


Solenoid Considerations for PXIE 162.5 MHz HWR Cryomodule

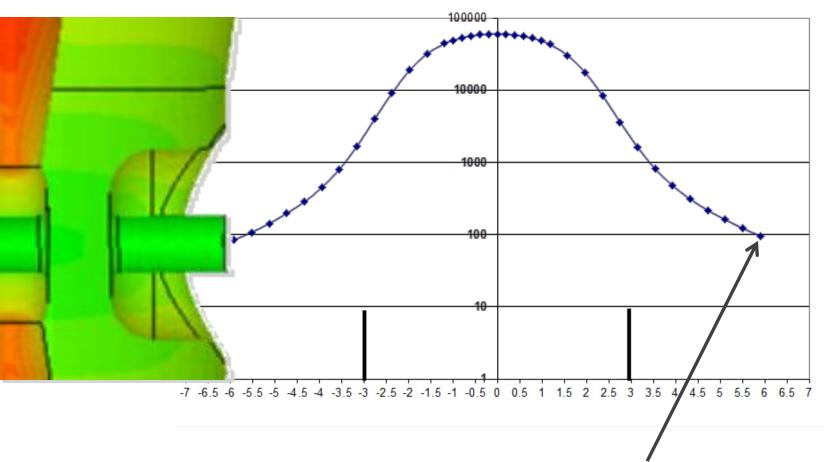

Mike Kelly


Physics Division

February 17, 2012


162.5 MHz Cavity/Solenoid/BPM

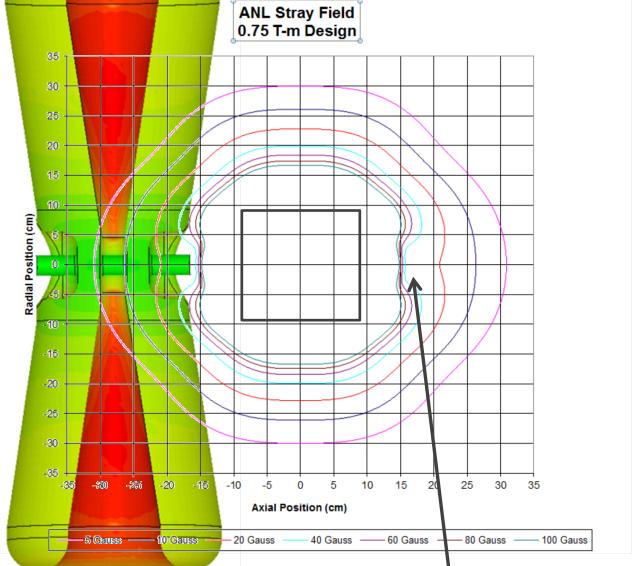
ANL (left) and HINS (right) solenoid concepts


Modifications to HINS solenoid to fit into ANL cryomodule approach

- Remove HINS base mount
- 2. Remove tee on top of HINS solenoid
- 3. Modify/remove and redo helium connection port
- 4. Weld on and machine ANL mounts
- 5. Weld on ANL cooldown port on bottom of solenoid
- 6. Weld on beam port nipple/conflat

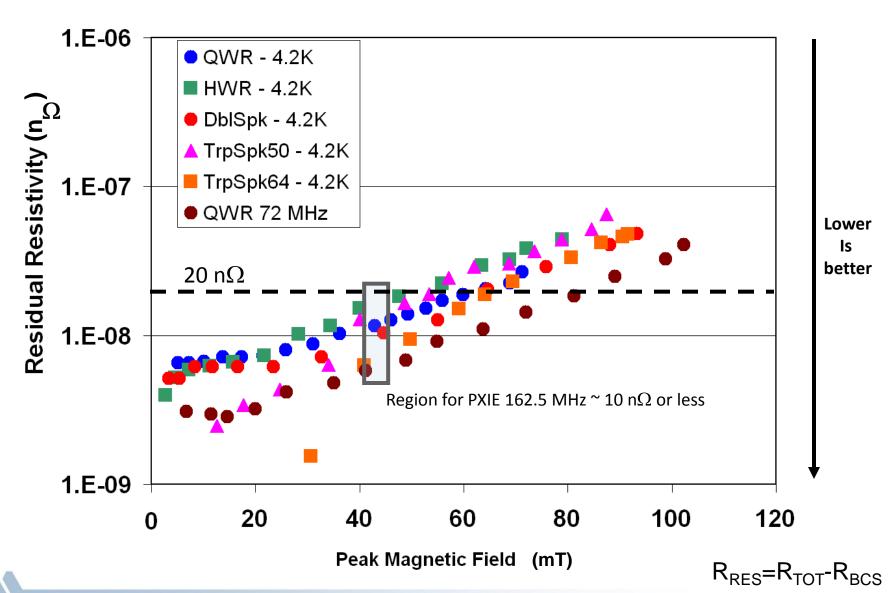
No cost savings realized from existing helium jacket; in fact, ~\$2K to remove existing vessel

3


On-axis B-field magnitude, HINS solenoid

For central field of 6 T fringe field is ~100 Gauss at 3 inches

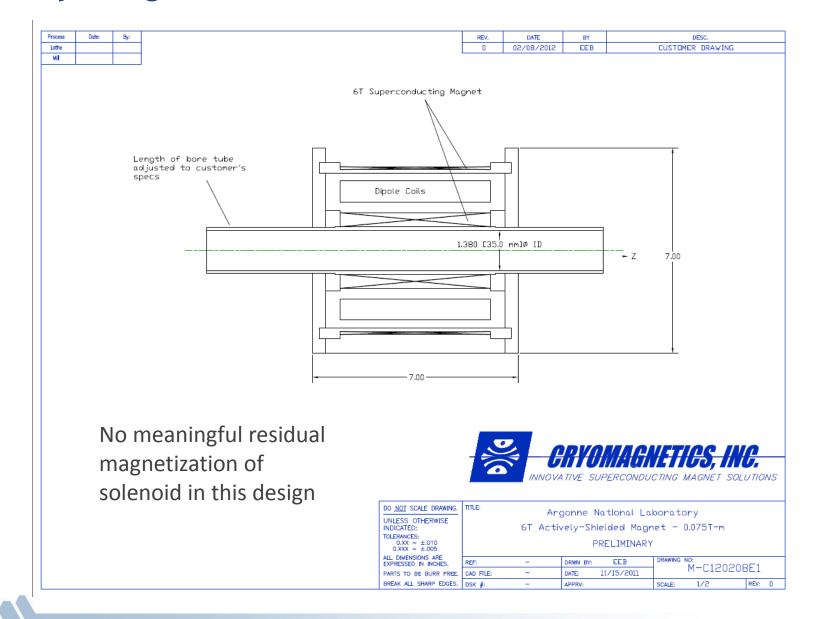
On-axis B-field magnitude, Cryomagnetics solenoid


For central field of 6 T fringe field is ~30 Gauss at 3 inches

Increase in Rs due to trapped flux on cooldown

- Approximately 0.1 $n\Omega$ per mGauss for 162.5 MHz
- Contribution due to penetration of earths field
 - ~15 mG gives 1.5 n Ω , i.e. pretty small
- Strong preference for no substantial residual magnitization of solenoid or other components in the cryomodule
 - Substantial means more than ~30 mG (1/2 Watt/cavity) at the position of the cavity

Surface magnetic field and R_{RES} in ANL Cavities


Unit Cost for Magnetic Shield

```
From: Brad Friestedt <br/>
Friestedt <br/>
From: Brad Friestedt <br/>
Friestedt <br/>
From: Brad Friestedt <br/>
Sent: Monday, February 11, 2002 4:12 PM<br/>
Subject: re[2]: Flat Pattern Drawing for Cylinder<br/>
Subject: re[2]: Flat
```

- Multi-piece shield will require some design effort
- Unit cost (M&S only) will conservatively be in the range of \$5K-\$10K/cavity

Cryomagnetics 0.75 T-m SC solenoid

Cryomagnetics 0.75 T-m SC solenoid

Page 1 of 1

To:

Michael P. Kelly Argonne National Laboratory mkelly@anl.gov

QUOTATION

Date: February 8, 2012

Quotation #: E20208A

Your Request #: Email of Feb. 6th

Item	Quantity	Description			Unit Price	Total
A	9 each	6T Superconducting Magnet, 0.75T-m Field Integral			\$26,500.00	\$238,500.00
		Active-shielded, superconducting solenoid using twisted, multifilamentary NbTi wire with a copper matrix. All coils are fully epoxy impregnated to prevent training.				
		Operating temperature:	4.6 Kelvin			
		Rated magnetic field integral:	$\int B_{\mathbf{Z}} dz = 0.75 \text{ T-m}$			
		Operating current:	~79 amps			
		Inductance:	1.1 henries			
		Shielding:	B<100G:	z >= 15cm		
1		_		$r \ge 17cm$		
		Steering coils:	0.2T			
		_	30 T-mm field integral 35 mm			
		Bore diameter:				

Bottom Line

- HINS solenoid helium jacket is not suited as is for the ANL cryomodule
 - Modest additional total cost (\$20K M&S + \$20K effort) to make useable for ANL cryomodule
- Magnetic shielding would be costly in both time and materials (\$60K M&S + \$40K effort conservatively)
- Total Incremental cost of new solenoids ~\$100K
- My opinion: A good part of the total cost of new solenoids is lost in addition time and materials; adds modest uncertainty to cavity/cryomodule performance; people resources for ANL are very tight; if the HINS solenoid were a close fit then it makes sense to use them; they are not a particularly close fit